Using interpretable gradient‐boosted decision‐tree ensembles to uncover novel dynamical relationships governing monsoon low‐pressure systems

Author:

Hunt Kieran M. R.12ORCID,Turner Andrew G.12ORCID

Affiliation:

1. Department of Meteorology University of Reading Reading United Kingdom

2. National Centre for Atmospheric Science University of Reading Reading United Kingdom

Abstract

AbstractLow‐pressure systems (LPSs) are the primary rainbringers of the South Asian monsoon. Yet, their interactions with the large‐scale monsoon circulation, as well as the highly variable land and sea surfaces they pass over, are complex and generally not well understood. In this article, we present a novel, top‐down approach to investigate these relationships and quantify their importance in describing LPS behaviour. We also show that, if the approach is sufficiently well posed, it is productive at hypothesis generation. For each of five predictands (i.e., LPS intensification rate, propagation speed/direction, post‐landfall survival, peak intensity, and precipitation rate) we train an additive decision‐tree ensemble model using the XGBoost algorithm. Shapley value analysis is then applied to the models to determine which variables are important predictors and to establish their relationship with the predictand, with additional analysis following cases of interest. Novel relationships established using this technique include that LPS vorticity intensifies preferentially in the early morning at the same time as the peak in the diurnal cycle of their convection occurs, that vertical wind shear suppresses continued growth of strong LPSs, that large‐scale barotropic instability plays an important role in both the inland penetration and peak intensity of LPSs, and that LPS propagation depends on the depth of its vortex with shallower LPSs advected by low‐level winds and taller LPSs advected by mid‐level winds. We also use this framework to identify and discuss potential new avenues of research for monsoon LPSs.

Funder

Newton Fund

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3