Preparation of a water‐absorbent mesoporous material and film to simulate the infrared spectrum of plants

Author:

Zhang Siqi1,Zhang Jianjun12ORCID,Zhang Yue3,Ma Sude1ORCID

Affiliation:

1. School of Material Science and Engineering Xihua University Chengdu China

2. Material Corrosion and Protection Key Laboratory of Sichuan Province Sichuan University of Science & Engineering Zigong China

3. Dongfang Electric Machinery Co. Ltd Chengdu China

Abstract

AbstractHyperspectral imaging poses great challenges to traditional camouflage materials, primarily because there is a huge difference between the reflectance spectra of camouflage materials and natural plants in the 1400–2000 nm band. The difficulty of simulating the natural plant spectrum lies in reproducing the absorption peak of water by increasing the water content in a camouflage material. Herein, a mesoporous (MS) material is used to simulate the plant spectrum because such material can absorb and retain a large amount of water. MS was prepared via a two‐step method using tetraethyl orthosilicate and tetrabutyl titanate. The characteristics of the as‐prepared MS were examined via X‐ray diffraction, transmission electron microscopy, ultraviolet–visible diffusion reflectance spectroscopy and nitrogen adsorption–desorption isotherms. In addition, a film was prepared using the fully absorbent mesoporous material, and the water content was determined via near‐infrared spectroscopy and thermogravimetric analysis. The bonding between the mesoporous material and resin was examined via field emission gun scanning electron microscopy. The mechanical properties of the film were measured by a pendulum hardness tester and a cylindrical bending tester. The results indicate that low‐temperature synthesis followed by high‐temperature hydrothermal treatment is conducive to expanding the mesopore aperture, reaching a maximum of 23 nm. Moreover, the regular structure of the as‐prepared titanium‐containing mesoporous material is maintained under high hydrothermal temperature. The mesoporous film exhibits a good water absorption capacity of up to 80% by mass and can effectively simulate the spectrum of plants. The mechanical properties of the film are good, and the hardness of the film is related to the content of mesoporous powder. © 2023 Society of Industrial Chemistry.

Publisher

Wiley

Subject

Polymers and Plastics,Materials Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3