Characteristic time scales of evaporation from a subarctic reservoir

Author:

Pierre Adrien12ORCID,Nadeau Daniel F.12ORCID,Thiboult Antoine12ORCID,Rousseau Alain N.3ORCID,Tremblay Alain4,Isabelle Pierre‐Erik12ORCID,Anctil François12ORCID

Affiliation:

1. Department of Civil and Water Engineering Université Laval Québec QC Canada

2. CentrEau – Water Research Centre, Université Laval Québec QC Canada

3. Institut National de la Recherche Scientifique – Centre Eau Terre Environnement Québec QC Canada

4. Hydro‐Québec Montréal QC Canada

Abstract

AbstractWater bodies such as lakes and reservoirs affect the regional climate by acting as heat sinks and sources through the evaporation of substantial quantities of water over several months of the year. Unfortunately, energy exchange observations between deep reservoirs and the atmosphere remain rare in northeastern North America, which has one of the highest densities of water bodies in the world. This study characterizes the dynamics of turbulent heat fluxes by analysing in‐situ observations of a compact and dimictic reservoir (50.69° N, 63.24° W) located in a subarctic environment. The reservoir is characterized by a mean depth of 44 m and a surface area of 85 km2. Two eddy covariance (EC) systems, one on a raft and one onshore, were deployed from 27 June 2018 to 12 June 2022. The thermal regime of the reservoir was monitored using two vertical chains of thermistors. Results indicate a mean annual evaporation rate of 590 ± 66 mm, which is equivalent to ≈51% of the annual precipitation, with 84% of the evaporation occurring at a high rate from August to freeze‐up in late December through episodic pulses. It was difficult to close the energy balance because of the magnitude and the large time lag of the heat storage term. To circumvent this problem, we opted to perform calculations for a year that started from the first of March, as the heat storage in the water column was at its lowest at that point and could thus be ignored. From June to December, monthly Bowen ratios increased from near‐zero negative values to about 1.5. After September, due to smaller vapour pressure deficits, latent heat fluxes steadily decreased until the reservoir had a complete ice cover. Opposite diurnal cycles of sensible and latent heat fluxes were revealed during the open water period, with sensible heat fluxes peaking at night and latent heat fluxes peaking in the afternoon.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3