The influence of climate and management on transpiration of residential trees during a bark beetle infestation

Author:

Litvak Elizaveta1ORCID,Pataki Diane E.1

Affiliation:

1. School of Sustainability Arizona State University Tempe Arizona USA

Abstract

AbstractTrees in residential environments are affected by a unique combination of environmental and anthropogenic factors, including occasional insect outbreaks that are increasing in frequency and severity due to climate change. We studied loblolly pine trees infested by bark beetles in a residential backyard in a southeastern US city. We investigated the responses of tree and stand‐level transpiration to environmental factors (solar radiation, atmospheric vapor pressure deficit, and soil moisture), severe weather events (strong winds and heavy storms), bark beetle infestation, and human actions (insecticide treatments and tree removals). We used constant heat dissipation probes to make continuous sap flux measurements (J0) in tree boles. Over 22 months of the study, J0 of trees with confirmed infestation decreased from ~90 to ~60 g cm−2 day−1 and J0 of the rest of the trees increased from ~60 to ~80 g cm−2 day−1. One infested tree died, as its J0 steadily declined from 110 g cm−2 day−1 to zero over the course of 2 months, followed by a loss of foliage and visible signs of severe infestation 6 months later. J0 was sensitive to variations in incoming solar radiation and atmospheric vapor pressure deficit. In most trees, J0 linearly responded to soil water content during drought periods. Yet despite complex dynamics of J0 variations, plot‐level transpiration at the end of the study was the same as at the beginning due to compensatory increases in tree transpiration rates. This study highlights the intrinsic interplay of environmental, biotic, and anthropogenic factors in residential environments where human actions may directly mediate ecosystem responses to climate.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3