Multi‐Objective Route Outlining and Collision Avoidance of Multiple Humanoid Robots in a Cluttered Environment

Author:

Kashyap Abhishek Kumar1ORCID,Parhi Dayal R.2

Affiliation:

1. Department of Mechatronics Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka India

2. Robotics Laboratory, Mechanical Engineering Department National Institute of Technology Rourkela Odisha India

Abstract

ABSTRACTIn robotics, navigating a humanoid robot through a cluttered environment is challenging. The present study aims to enhance the footstep and determine optimal paths regarding the robot's route length. The objective function for navigation of multiple humanoid robots is presented to optimize the route length and travel time. A hybrid technique using a probabilistic roadmap (PRM) and firefly algorithm (FA) is presented for humanoid robot navigation in a cluttered environment with static and dynamic obstacles. Sensory information, such as barrier range in the left, right, and front directions, is fed into the PRM framework that allows the humanoid robot to walk steadily with an initial steering angle. It finds the shortest path using the Bellman–Ford algorithm. The FA technique is used for efficient guidance and footstep modification in a cluttered environment to find a smooth and optimized path. To avoid static obstacles, the suggested hybrid technique provides optimum steering angles and ensures the minimum route length by taking the output of PRM as its input. A 3D simulator and a real‐world environment have been used for simulation and experiment in a cluttered environment utilizing the developed model and standalone methods. The humanoid robot achieves the target in all scenarios, but the FA‐tuned PRM technique is advantageous to this purpose, as shown by the convergence curve, route length, and travel duration. Multiple humanoid robot navigation has an additional self‐collision issue, which is eliminated by employing a dining philosopher controller as the base technique. In addition, the proposed controller is evaluated in contrast to the existing technique. The developed strategy ensures effectiveness and efficacy depending on these findings.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3