Utilizing a comparative approach to assess genome evolution during diploidization in Artemisia tridentata, a keystone species of western North America

Author:

Melton Anthony E.1ORCID,Novak Stephen J.1ORCID,Buerki Sven1ORCID

Affiliation:

1. Department of Biological Sciences Boise State University Boise 83725 ID USA

Abstract

AbstractPremisePolyploidization is often followed by diploidization. Diploidization is generally studied using synthetic polyploid lines and/or crop plants, but rarely using extant diploids or nonmodel plants such as Artemisia tridentata. This threatened western North American keystone species has a large genome compared to congeneric Artemisia species; dominated by diploid and tetraploid cytotypes, with multiple origins of tetraploids with genome size reduction.MethodsThe genome of an A. tridentata sample was resequenced to study genome evolution and compared to that of A. annua, a diploid congener. Three diploid genomes of A. tridentata were compared to test for multiple diploidization events.ResultsThe A. tridentata genome had many chromosomal rearrangements relative to that of A. annua, while large‐scale synteny of A. tridentata chromosome 3 and A. annua chromosome 4 was conserved. The three A. tridentata genomes had similar sizes (4.19–4.2 Gbp), heterozygosity (2.24–2.25%), and sequence (98.73–99.15% similarity) across scaffolds, and in k‐mer analyses, similar patterns of diploid heterozygous k‐mers (AB = 41%, 47%, and 47%), triploid heterozygous k‐mers (AAB = 18–21%), and tetraploid k‐mers (AABB = 13–17%). Biallelic SNPs were evenly distributed across scaffolds for all individuals. Comparisons of transposable element (TE) content revealed differential enrichment of TE clades.ConclusionsOur findings suggest population‐level TE differentiation after a shared polyploidization‐to‐diploidization event(s) and exemplify the complex processes of genome evolution. This research approached provides new resources for exploration of abiotic stress response, especially the roles of TEs in response pathways.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3