Micellization Behavior and Thermodynamic Characteristics of Saponin and SDS: The Impact of Silica Nanoparticles for Subsurface Formation Interaction Studies

Author:

Muneer Rizwan1,Alimkulov Rustam2,Eghtesadi Neda3,Ormantayeva Anar4,Thanh Pham Tri4,Abbas Azza Hashim1ORCID

Affiliation:

1. Department of Petroleum Engineering School of Mining and Geosciences Nazarbayev University Astana 010000 Kazakhstan

2. School of Medicine Nazarbayev University Astana 010000 Kazakhstan.

3. Department of Chemical and Materials Engineering School of Engineering and Digital Sciences Nazarbayev University Astana 010000 Kazakhstan

4. Department of Biology School of Sciences and Humanities Nazarbayev University Astana 010000 Kazakhstan

Abstract

AbstractThis study investigates the temperature‐dependent micellization behaviors of saponin and sodium dodecyl sulfate (SDS) surfactants, which are both important for chemical enhanced oil recovery (CEOR). It also evaluates the effect of silica nanoparticles (SiO2) on these behaviors, given the growing interest in nanoparticle‐enhanced surfactants. The research focuses on the tunable properties of nanoparticle‐surfactant combinations. The structural differences between saponin and SDS were identified using FT‐IR and H‐NMR. The Du Noüy ring method was used to measure surface tension at various concentrations and temperatures (25–75 °C). FTIR analysis showed distinct differences between SDS and Saponin, associated with head group where there is hydroxyl groups in SDS solution. H‐NMR showed higher complexity of Saponin's structure, evidenced by its diverse sugar‐related proton peaks. Both SDS and Saponin reduce surface tension with temperature; SDS is more effective, lowering it to 42.1 mN/m versus 48.5 mN/m for Saponin. With SiO2, tensions drop to 39.2 mN/m for SDS and 45.5 mN/m for Saponin. Both surfactants maintain CMCs under reservoir temperature in the 0.05–0.1 wt % range. Saponin exhibited a more negative ΔG° and consistently negative ΔH°, indicating a thermodynamically favorable exothermic reaction. The novelty of this study lies in its focus on both anionic and nonionic surfactants under simulated reservoir conditions. The study focuses on the role of nanoparticles in enhancing surfactant stability and efficiency by addressing thermodynamic parameters.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3