Recent Trends on Zinc Complexes Bearing Bi‐, Tri‐ and Tetra‐Dentate Schiff Base Ligands for Catalytic Ring‐Opening Polymerization of Lactides

Author:

Yadav Neeraj1ORCID,Singh Chundawat Tejpal12ORCID

Affiliation:

1. Department of Applied Sciences The NorthCap University Sector 23-A Gurugram, Haryana 122017 India

2. Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar, Haryana 125001 India

Abstract

AbstractNumerous zinc complexes based on N‐ and O‐donor Schiff‐base ligands have shown great promise in the ring‐opening polymerization (ROP) of lactides, which are cyclic dimers of lactic acid, to produce poly(lactic acid) (PLA). This is primarily because zinc is a borderline metal, making it non‐cytotoxic, inexpensive, abundant, biocompatible, and environmentally safe. Additionally, Schiff‐based ligands offer stability, stereoselectivity, desirable electronic and steric environments, and resistance to impurities. As a result, zinc complexes are easy to synthesize, colourless, have high reactivity and solubility in organic solvents, and are manageable under typical circumstances. Furthermore, these complexes are free to adopt a variety of coordination numbers since zinc does not have ligand field stabilization energy (LFSC). Zinc complexes possess high catalytic activity due to their distinctive properties, including high Lewis acidity, high electron transfer ability, stability concerning the reactive intermediate, and the ability to monitor polymerization by nuclear magnetic resonance (NMR) spectroscopy. Moreover, these complexes also have reasonable control over stereochemistry, number‐average molecular weight (Mn), and dispersity index (Ð). These advantages make it possible to produce colourless PLA with a high yield, high molecular weight, and narrow dispersity index in bulk and solvent‐based conditions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3