The Use of Conjugated Gold Nanorods with Reduced Toxicity in Photothermal Therapy for MRSA

Author:

Yusufbeyoğlu Sadi1ORCID,Cinar Venhar2ORCID,Ildiz Nilay3ORCID,Hamurcu Zuhal2ORCID,Ocsoy İsmail4ORCID,Kilic Ayşe Baldemir1ORCID

Affiliation:

1. Department of Pharmaceutical Botany Faculty of Gulhane Pharmacy University of Health Sciences Keçiören Turkey

2. Department of Medical Biology Faculty of Medicine Erciyes University Kayseri Turkey

3. Medical Imaging Department Bandırma Onyedi Eylul University Vocational School of Health Services Bandirma Turkey

4. Department of Analytical Chemistry Faculty of Pharmacy Erciyes University Kayseri Turkey

Abstract

AbstractMethicillin‐resistant Staphylococcus aureus (MRSA) is one of the deadliest pathogenic bacteria. Using photothermal therapy (PTT) to eradicate MRSA bacteria easily and effectively, it has directed this bacterium to be destroyed. Gold nanorods (AuNRs), which are nanoparticles that provide PPT, were synthesized and removed from the CTAB molecule reduce the toxic effect caused by CTAB. Subsequently, mercaptophenylboronic acid (MFBA) coated AuNRs were synthesized and used in photothermal therapy to develop a targeting agent to selectively eliminate MRSA. A decrease in cytotoxic effect of CTAB@AuNRs after conjugation with MFBA was also demonstrated by the MTS cell viability test. We found that at the end of 48 hours and 72 hours of interaction, IC50 values of MFBA@ AuNR increased by approximately 50 % compared to CTAB@AuNR. Also, it shows that the cytotoxicity of AuNRs conjugated with MFBA was reduced. Herein, photothermal efficiency was achieved with MFBA@AuNRs targeting MRSA. The purpose of using and modifying gold nanorods is to reduce the toxicity of AuNRs and to examine their efficacy on resistant pathogenic bacteria strains by taking advantage of photothermal therapy properties.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3