Synthesis, Biological Evaluation, Molecular Docking and Kinetic Investigation of New 2,4,5‐Trisubstituted Imidazole Derivatives as Antidiabetic Agents

Author:

Kumar Pawan1,Syal Bindu1,Seboletswe Pule2,Cele Nosipho2,Olofinsan Kolawole3,Singh Parvesh2,Shahidul Islam Md.3,Singh Deepika4,Gupta Princy1ORCID

Affiliation:

1. Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba, <city/Jammu-181143, J&K India

2. School of Chemistry and Physics University of KwaZulu-Natal P/Bag X54001 Westville, Durban South Africa

3. Department of Biochemistry School of Life Sciences University of Kwazulu-Natal Westville Durban South Africa

4. Quality, Management & Instrumentation Division CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001

Abstract

AbstractA series of novel 2,4,5‐trisubstituted imidazole motifs have been synthesized by a magnetically‐tuned halloysite‐supported sulfonic acid catalyst. The prepared supported sulfonic acid catalyst was well characterized by High‐resolution transmission electron microscopy (HR‐TEM), Scanning electron microscopy (SEM), Energy dispersive X‐rays spectroscopy (EDS), Fourier transform infrared (FTIR), X‐ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), and Vibrating–sample magnetometry (VSM) techniques; and compounds were confirmed by 1H, 13C‐Nuclear magnetic resonance (NMR) and High resolution mass spectrometry (HRMS) techniques. The purity of compounds was established by High performance liquid chromatography (HPLC). All the prepared compounds were screened for their in vitro antidiabetic activity by using α‐amylase and α‐glucosidase inhibition assay taking acarbose as a reference standard and were found to exhibit significant α‐amylase inhibitory potentials, whereas for α‐glucosidase inhibition, compounds were equipotent to the reference standard. Compound bearing ferrocene moiety was identified as the strongest α‐amylase inhibitor of the series with IC50=47.83±0.63 μM, a five‐fold more potency compared to acarbose (IC50 =269.39±0.29 μM). The presence of substituents in the second position of imidazole pharmacophore plays a key role in inhibitory activity. To find the possible binding interaction of compounds, in silico molecular docking study was performed.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3