Intracellular Reactive Oxygen Species Mark and Influence the Megakaryocyte-Erythrocyte Progenitor Fate of Common Myeloid Progenitors

Author:

Shinohara Akihito1,Imai Yoichi1,Nakagawa Masahiro1,Takahashi Tsuyoshi1,Ichikawa Motoshi1,Kurokawa Mineo1

Affiliation:

1. Department of Hematology & Oncology Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Abstract

Abstract While most studies regarding reactive oxygen species (ROS) focus on their deleterious biological effects, a growing body of evidence indicates the importance of ROS as critical mediators of several signaling pathways, including those involved in hematopoiesis. In this study, we show the critical role of ROS in lineage decision of myeloid progenitors. In megakaryocyte-erythrocyte progenitor cells (MEP), intracellular ROS levels were found to be as low as those in hematopoietic stem cells (HSC). In contrast, remarkably high intracellular ROS levels were observed in granulocyte-monocyte progenitor cells. Intracellular ROS levels in common myeloid progenitors (CMP) were inversely correlated with their MEP differentiation potential. Moreover, gene set enrichment analysis revealed that ROS-low CMP showed gene expression patterns similar to those of MEP, indicating that intracellular ROS levels mark the fate of CMP. In in vitro assays, ROS significantly suppressed the generation of MEP and the formation of megakaryocyte-erythrocyte colonies from CMP. In ROS-high CMP, expression of colony-stimulating factor one receptor (CSF1R) was highly upregulated, and its surface expression correlated with their granulocyte-monocyte differentiation potential. Furthermore, ROS was found to induce the expression of CSF1R mRNA in a leukemia cell line. These data provide novel insights into the relationship between ROS and the hematopoietic differentiation system. Stem Cells  2014;32:548–557

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3