Estimation of impact of non‐local ion heat flux model on transport simulation for DEMO‐relevant scrape‐off layer plasma

Author:

Homma Yuki1,Hoshino Kazuo2,Yamoto Shohei3,Tokunaga Shinsuke1,Asakura Nobuyuki3,Miyato Naoaki1

Affiliation:

1. Rokkasho Fusion Institute National Institutes for Quantum Science and Technology (QST) Aomori Japan

2. Graduate School of Science and Technology Keio University Yokohama Japan

3. Naka Fusion Institute National Institutes for Quantum Science and Technology (QST) Ibaraki Japan

Abstract

AbstractIn a fusion DEMOnstration reactor (DEMO)‐relevant scrape‐off layer plasma (SOL), whose collisionality is lower than in the SOLs of present‐day tokamaks, kinetic effects are predicted to reduce the plasma heat conductivity along the magnetic field below the value obtained with the classical Spitzer–Harm model. As a part of ongoing efforts to improve the predictive capability of SOL heat transport calculations, we have implemented the non‐local heat flux model proposed by [Luciani, Mora and Virmont, Phys. Rev. Lett. 51 (1983) 1664–1667] (here referred to as the LMV model) in the integrated SOL–divertor simulation code SONIC in order to account for the kinetic effect on the heat conduction due to the parallel streaming of rapidly moving particles. Our transport simulations for the Japanese demonstration tokamak reactor concept, JA DEMO, show that the LMV model yields a significantly reduced ion parallel conductive heat flux density both on the low‐ and high‐field side of the upstream SOL. The heat flux obtained with the LMV model seems to be consistent with earlier kinetic simulations of tokamak ion transport. As a consequence of the reduced heat flux, a significant increase in the ion temperature and a decrease in the density have also been found over a broad area of the upstream SOL.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3