Current technical advancements in plant epitranscriptomic studies

Author:

Xie Yichun1ORCID,Chan Long‐Yiu1ORCID,Cheung Ming‐Yan1ORCID,Li Man‐Wah1ORCID,Lam Hon‐Ming1ORCID

Affiliation:

1. School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Shatin Hong Kong SAR China

Abstract

AbstractThe growth and development of plants are the result of the interplay between the internal developmental programming and plant–environment interactions. Gene expression regulations in plants are made up of multi‐level networks. In the past few years, many studies were carried out on co‐ and post‐transcriptional RNA modifications, which, together with the RNA community, are collectively known as the “epitranscriptome.” The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third‐generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant–environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi‐omics investigations using the recent technical advancements.

Funder

Chinese University of Hong Kong

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3