Affiliation:
1. AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei China
2. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou China
Abstract
AbstractThe CO2‐derived dimethyl carbonate (DMC) synthesis process becomes greatly attentive but suffers high energy consumption in DMC distillation process. In this work, the DMC‐MeOH azeotropes separation process by pressure swing distillation and extractive distillation was compared, and key operating parameters, including the total number of trays and the feeding position of the mixture liquid, were optimized with the minimum total annual cost (TAC) as the objective function. On the basis of this optimization, economic evaluation of different distillation processes was conducted, and it was found that extractive distillation was more economical than pressure swing distillation. The application of the dividing‐wall distillation process upgraded by extractive distillation can significantly reduce the minimum annual total cost by 37.4% and 10.7% compared to the original pressure swing distillation and extractive distillation process, respectively. The optimization of relevant heat exchange network based on pinch technology resulted in energy consumption reduction by 27.2% and 25.9% for its hot and cold utilities, respectively. Carbon life cycle assessment (LCA) on the DMC distillation process revealed over 50% of energy as well as carbon emissions from steam consumption, whose reduction can significantly minimize CO2 emissions, energy consumption, and ultimate cost. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
Funder
National Natural Science Foundation of China