Validation of a new tool to predict the weed emergence in Spain

Author:

Sousa‐Ortega Carlos1ORCID,Alcantara Maria Cristina2ORCID

Affiliation:

1. Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA) Universidad de Sevilla Seville Spain

2. Protección de Cultivos Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Cordoba Spain

Abstract

AbstractBackgroundThe seedling stage is the most vulnerable period of growth and development for annual weeds and an important target for weed management operations. To address this, several weed emergence models have been developed, but none are commercially available. Therefore, this study aims to develop a web application that implements predictive weed emergence models for eight different weed species, utilizing weather data sourced from public weather stations.ResultsLolium rigidum Gaudin presented a mean root mean squared error (RMSE) value of 8.9, achieving an RMSE value below 15 (success rate) in 84.5% of cases. This result may be attributed to the use of a water potential base, set at −0.4 MPa, to evaluate water availability. Centaurea diluta Aiton achieved an RMSE value below 15 in all situations, with an average value of 9.0. This weed showed higher accuracy at southern sites than northern sites. Conversely, Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne achieved higher precision at northern sites where no dry periods occurred. The newly developed model for Bromus diandrus Roth. achieved an average RMSE value of 7.7 and a 100% success rate. Papaver rhoeas L. and the three Phalaris species exhibited lower accuracy in this study than in previous ones. Nonetheless, the success rates for Papaver rhoeas and Phalaris paradoxa L. were still above 70%.ConclusionModels for C. diluta, B. diandrus, L. rigidum, Papaver rhoeas and Phalaris paradoxa have demonstrated potential for adoption in commercial production, while Phalaris minor and Phalaris brachystachys models require refinement. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Reference46 articles.

1. Crop losses to pests

2. FAO Pesticides Use FAOSTAT(2020).https://www.fao.org/faostat/en/#data/RP.

3. HeapI The international survey of herbicide resistant weeds(2022). Online http://www.weedscience.org.

4. Weed biology serves practical weed management

5. Modeling seedling emergence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3