PBPK Modeling of Entrectinib and Its Active Metabolite to Derive Dose Adjustments in Pediatric Populations Co‐Administered with CYP3A4 Inhibitors

Author:

Umehara Kenichi1,Parrott Neil1ORCID,Schindler Emilie1,Legras Valentin1,Meneses‐Lorente Georgina12

Affiliation:

1. Roche Pharmaceutical Research and Early Development Roche Innovation Center, F. Hoffmann‐La Roche Ltd. Basel Switzerland

2. Roche Pharmaceutical Research and Early Development Roche Innovation Center, Roche Products Ltd Welwyn UK

Abstract

Physiologically based pharmacokinetic (PBPK) models of entrectinib and its equipotent metabolite, M5, were established in healthy adult subjects and extrapolated to pediatric patients to predict increases in steady‐state systemic exposure on co‐administration of strong and moderate CYP3A4 inhibitors (itraconazole at 5 mg/kg, erythromycin at 7.5–12.5 mg/kg and fluconazole at 3–12 mg/kg, respectively). Adult model establishment involved the optimization of fraction metabolized by CYP3A4 (0.92 for entrectinib and 0.98 for M5) using data from an itraconazole DDI study. This model captured well the exposure changes of entrectinib and M5 seen in adults co‐administered with the strong CYP3A4 inducer rifampicin. In pediatrics, reasonable prediction of entrectinib and M5 pharmacokinetics in ≧2 year olds was achieved when using the default models for physiological development and enzyme ontogenies. However, a two to threefold misprediction of entrectinib and M5 exposures was seen in <2 year olds which may be due to missing mechanistic understanding of gut physiology and/or protein binding in very young children. Model predictions for ≧2 year olds showed that entrectinib AUC(0−t) was increased by approximately sevenfold and five to threefold by strong and high‐moderate and low‐moderate CYP3A4 inhibitors, respectively. Based on these victim DDI predictions, dose adjustments for entrectinib when given concomitantly with strong and moderate CYP3A4 inhibitors in pediatric subjects were recommended. These simulations informed the approved entrectinib label without the need for additional clinical pharmacology studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3