Hybrid multiwalled‐carbon nanotube/nanosilica/polypropylene nanocomposites: Morphology, rheology, and mechanical properties

Author:

Yousefi Ali Akbar1ORCID,Rezaei Mahsa2,Naderpour Navid2

Affiliation:

1. Department of Plastics Iran Polymer and Petrochemical Institute Tehran Iran

2. Mahshahr Campus Amirkabir University of Technology Mahshahr Iran

Abstract

AbstractPolymer composite are very interesting materials in automotive industry. Nanocomposites play a crucial role in the automotive parts and cars weight reduction fields. Hybridization of polymer nanocomposites is appeared as a process of choice in obtaining the required property/weight ration. Simple and hybrid nanocomposites of polypropylene (PP) blend with carbon nanotubes (CNTs) having different aspect ratios and nanosilica at different nanosilica contents were prepared in molten state in an internal mixer. Scanning electron microscopic images along with rheological and tensile properties revealed that only 0.2 wt% CNT is high enough to finely disperse nanosilica particles in PP matrix in the absence of any chemical compatibilizer. Differential scanning calorimetric thermograms showed that none of nanoparticles has any effect on crystallinity of PP. Mechanical characterizations showed that hybrid composites are superior to PP‐S3 composite. Due to its more intensive hydrodynamic motions it was also observed that the longer CNT showed a higher ability to disintegrate nanosilica particles aggregates. Transmission electron microscopic images well portrayed the nanosilica particles in the vicinity of CNTs' surfaces which accounts for electrostatic adsorption of fine nanosilica particles. At such a low CNT content (say 0.2 wt%) in the absence of any chemical compatibilizer, elongation at break of the tensiled nanocomposites raised from 13.23% to 35.41% and fracture energy was mounted from 1253 to 2750 J. This divulges the effectiveness of CNTs to disperse nanosilica in PP matrix but a poor adhesion between the particles and PP matrix is an overwhelming drawback yet. Under these conditions a maleic anhydride grafted PP (PP‐g‐MA) was added to the composite in molten state. The tensile strength of these chemically compatibilized nanocomposites increased with respect of that of their counterpart physically mixed nanocomposites. For example, in the presence of this chemical compatibilizer, the tensile strength of PP‐S3 nanocomposite raised from 21 to 28 MPa.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3