Computation of the distribution of model accuracy statistics in machine learning: Comparison between analytically derived distributions and simulation‐based methods

Author:

Huang Alexander A.1,Huang Samuel Y.2ORCID

Affiliation:

1. Northwestern University Feinberg School of Medicine Northwestern University Chicago Illinois USA

2. Virginia Commonwealth School of Medicine Virginia Commonwealth University Richmond Virginia USA

Abstract

AbstractBackground and AimsAll fields have seen an increase in machine‐learning techniques. To accurately evaluate the efficacy of novel modeling methods, it is necessary to conduct a critical evaluation of the utilized model metrics, such as sensitivity, specificity, and area under the receiver operator characteristic curve (AUROC). For commonly used model metrics, we proposed the use of analytically derived distributions (ADDs) and compared it with simulation‐based approaches.MethodsA retrospective cohort study was conducted using the England National Health Services Heart Disease Prediction Cohort. Four machine learning models (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boost) were used. The distribution of the model metrics and covariate gain statistics were empirically derived using boot‐strap simulation (N = 10,000). The ADDs were created from analytic formulas from the covariates to describe the distribution of the model metrics and compared with those of bootstrap simulation.ResultsXGBoost had the most optimal model having the highest AUROC and the highest aggregate score considering six other model metrics. Based on the Anderson–Darling test, the distribution of the model metrics created from bootstrap did not significantly deviate from a normal distribution. The variance created from the ADD led to smaller SDs than those derived from bootstrap simulation, whereas the rest of the distribution remained not statistically significantly different.ConclusionsADD allows for cross study comparison of model metrics, which is usually done with bootstrapping that rely on simulations, which cannot be replicated by the reader.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3