Affiliation:
1. Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
2. Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
3. Department of Material Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku, Kyoto 615-8520 Japan
4. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals KFUPM Box 5040 Dhahran 31261 Saudi Arabia
5. K.A.CARE Energy Research & Innovation Center King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
Abstract
AbstractAluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K−1), low cost, and high safety compared to state‐of‐the‐art lithium‐ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal‐organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.
Subject
Materials Chemistry,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献