Advancements in Perovskite‐Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review

Author:

Samreen Ayesha1ORCID,Ali Muhammad Sudais1,Huzaifa Muhammad1,Ali Nasir2,Hassan Bilal1,Ullah Fazl1,Ali Shahid1,Arifin Nor Anisa3

Affiliation:

1. Department of Physics University of Peshawar Peshawar 25120 Pakistan

2. Research Center for Sensing Materials and Devices Zhejiang Labs Yuhang District Nanhu China

3. Materials Engineering and Testing Group TNB Research Sdn Bhd, No.1, Kawasan Institusi Penyelidikan Jln Ayer Hitam 43000 Kajang Selangor Malaysia

Abstract

AbstractThe high‐temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen‐based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C<T<800 °C) in SOFCs in order to extend their life span, thermal compatibility, cost‐effectiveness, and ease of fabrication. However, the major challenges in developing cathode materials for low/intermediate temperature SOFCs include structural stability, catalytic activity for oxygen adsorption and reduction, and tolerance against contaminants such as chromium, boron, and sulfur. This research aims to provide an updated review of the perovskite‐based state‐of‐the‐art cathode materials LaSrMnO3 (LSM) and LaSrCOFeO3 (LSCF), as well as the recent trending Ruddlesden‐Popper phase (RP) and double perovskite‐structured materials SOFCs technology. Our review highlights various strategies such as surface modification, codoping, infiltration/impregnation, and composites with fluorite phases to address the challenges related to LSM/LSCF‐based electrode materials and improve their electrocatalytic activity. Moreover, this study also offers insight into the electrochemical performance of the double perovskite oxides and Ruddlesden‐Popper phase materials as cathodes for SOFCs.

Publisher

Wiley

Subject

Materials Chemistry,General Chemical Engineering,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3