Affiliation:
1. Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 388 Lumo RD Wuhan 430074 P. R. China
2. Zhejiang Institute China University of Geosciences Hangzhou 311305 P. R. China.
Abstract
AbstractProton exchange membrane water splitting (PEMWS) technology has high‐level current density, high operating pressure, small electrolyzer‐size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high‐quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long‐term non‐decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Subject
Materials Chemistry,General Chemical Engineering,Biochemistry,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献