Effect of water salinity and sodicity on soil least limiting water range

Author:

Safadoust Azadeh1ORCID,Dashtpeyma Behzad1,Mosaddeghi Mohammad Reza2,Asgarzadeh Hossein3,Gharabaghi Bahram4ORCID

Affiliation:

1. Department of Soil Science, College of Agriculture Bu‐Ali Sina University Hamedan Iran

2. Department of Soil Science, College of Agriculture Isfahan University of Technology Isfahan Iran

3. Department of Soil Science, College of Agriculture Urmia University Urmia Iran

4. School of Engineering University of Guelph Guelph Ontario Canada

Abstract

AbstractThis study aimed to evaluate the effects of water salinity and sodicity on the least limiting water range (LLWR) of two clay loam and sandy loam soils. The undisturbed soil samples were subjected to different water qualities, including three levels of sodium adsorption ratio (SAR, 1, 5, and 12) and electrical conductivity (EC, 1, 6, and 10 dS m−1). Our findings indicate that increasing EC at each SAR led to greater soil water retention. This was attributed to salinity affecting pore size distribution toward smaller pores by altering the diffuse double layer and causing soil particle flocculation. With increasing SAR levels at each EC level, soil water content at the wilting point also rose due to structural changes, clay swelling, and dispersion, resulting in more micropores and increased adsorptive surfaces in the soil. Additionally, soil volumetric water content at a 10% air‐filled porosity decreased, while values at a critical penetration resistance of 2 MPa increased with higher bulk density across all treatments. The LLWR showed a negative correlation with bulk density in clay loam soil across all SAR and EC treatments. The LLWR increased with higher water EC but decreased with increasing water SAR. The highest LLWR was observed at SAR = 1 and EC = 10 dS m−1, while the lowest occurred at SAR = 12 and EC = 1 dS m−1. The results revealed that elevated values of SAR in irrigation water reduced soil water accessibility for plants. However, as irrigation water salinity increased, the detrimental effects of SAR diminished.

Funder

Bu-Ali Sina University

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3