Investigation of short‐term effects of forage radish on water and solute transport through a tracer test and inverse modeling

Author:

Camarotto Carlo1ORCID,Dal Ferro Nicola1ORCID,Piccoli Ilaria1ORCID,Longo Matteo1ORCID,Duwig Celine2,Oxarango Laurent2,Morari Francesco1ORCID

Affiliation:

1. Department of Agronomy, Food, Natural Resources, Animals and Environment University of Padova Padova Italy

2. IGE, CNRS, G‐INP, IRD, Université Grenoble Alpes Grenoble France

Abstract

AbstractThe benefits of using cover crops for improving soil and water quality are well known. Less clear is whether cover crops, especially those forming a taproot system, can favor solute transport down to the groundwater by modifying soil hydraulic properties and solute dynamics. In this study, we employed 12 lysimeters to conduct a comparative analysis between a taproot cover crop, specifically forage radish (FR), and bare soil (BS), under three water table management conditions. Our objective was to evaluate whether the enhancement of root‐derived macroporosity could have modified water and solute dynamics, and offset the benefits provided by FR that is commonly used to mitigate solute leaching. A tracer solution of bromide (Br) was added to lysimeters, and solute flux concentrations were determined at different depths during a 25‐day test. Soil moisture and pressure heads were monitored. Water and solute transport parameters were estimated by inverse modeling using HYDRUS‐1D. A complementary laboratory experiment was performed to quantify the effect of FR root apparatus on the macropore structure by using noninvasive X‐ray microtomography (µCT). Results showed that the growth of FR within the lysimeters induced alterations in water and solute dynamics compared with BS. This is primarily attributed to its proficiency as solute scavenger, with an uptake capacity of up to 47% of the total injected tracer. Our comparative analysis instead revealed subtle differences in soil structure and hydraulic properties brought about by the presence of FR. Major changes were observed for the saturated hydraulic conductivity (Ks), which increased from an average of 8.4–49.8 cm day−1 within the 20–45 cm layer in BS and FR, respectively. Additionally, there was a difference in immobile water content (θim), with the values in FR averaging 21% lower than those in BS. These modifications can be attributed to the formation of fissures and channels, primarily concentrated in the proximity of taproot development, without extending into deep preferential flow pathways. These structural changes were supported by the nondestructive µCT analyses. Upon aggregating the effects observed, solute movement to groundwater was not affected by FR compared to BS conditions.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3