Assessing the utility of Munsell soil color in building and evaluating spectral models for soil clay content prediction

Author:

Dharumarajan S.1ORCID,Gomez C.23,Lalitha M.1,Vasundhara R.1,Hegde R.1,Patil N. G.4

Affiliation:

1. ICAR‐National Bureau of Soil Survey and Land Use Planning Regional Centre Bangalore India

2. LISAH, University Montpellier, IRD, INRAE, Institut Agro, AgroParisTech Montpellier France

3. Indo‐French Cell for Water Sciences, IRD Indian Institute of Science Bengaluru India

4. ICAR‐National Bureau of Soil Survey and Land Use Planning Nagpur India

Abstract

AbstractThe present study examined how the use of soil color can help build and evaluate clay content prediction models from laboratory visible and near infrared spectroscopic data. This study was based on a regional database containing 449 soil samples collected over Karnataka state in India, which has been divided into red soils (240 samples) and black soils (209 samples) based on their Munsell soil color. Partial least squares regression models were calibrated and validated from both the regional datasets and subsets stratified as red and black soils. In addition, a random forest model was used to classify the validation soil samples into black and red classes to evaluate models’ performance. First, while the clay content predicted by the regression model built from regional data was evaluated as correct at regional scale (R2val of 0.75), this model was evaluated as more accurate over black (R2val of 0.8) than red (R2val of 0.63) soil samples. Second, the regression models built from subsets stratified per soil color provided different performances than the regression model built from the regional data, both at the regional scale and soil color scale. In conclusion, this study demonstrated that (1) predictions are highly dependent on calibration data, (2) the interpretation of prediction performances relies heavily on validation data, and (3) pedological knowledge, such as soil color, can be effectively employed as an encouraging covariate in both the construction and evaluation of regression models.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3