Laminar flame speed measurement and combustion mechanism optimization of methanol–air mixtures

Author:

Wang Lei1,Zhang Zixing1,Zhong Zheng1

Affiliation:

1. School of Energy and Power Jiangsu University of Science and Technology Zhenjiang Jiangsu P.R. China

Abstract

AbstractLaminar flame speeds of methanol/air mixtures at 338–398 K are measured by the heat flux method, extending the range of equivalence ratio up to 2.1. And a new optimized methanol mechanism with 94 reactions is proposed by using the particle swarm algorithm, adjusting 20 Arrhenius pre‐exponential factors in their uncertainty domains. The optimized model is compared with eight methanol combustion mechanisms and experimental data published in recent years, covering a wide range of initial temperatures (298–1537 K), pressures (0.04–50 atm) and equivalence ratios (0.5–2.1). The results show that the optimized mechanism not only improves the accuracy of ignition delay time with rapid compression machine at low temperature but also moderately improve the description of laminar flame speed in lean and stoichiometric conditions. Meanwhile, the optimized model significantly enhances the prediction accuracy of CH3 and CH2O radical, and perfectly captures the evolution trend of HCO radical in laminar flat flame. Overall, the optimized mechanism provides the best overall description of the currently available measurements, leading to more accurate and comprehensive prediction of ignition delay time, laminar flame speed and species concentration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3