Application of the kinetic polynomial idea to describe catalytic hydrogenation of propene

Author:

Szukiewicz Mirosław1ORCID,Chmiel‐Szukiewicz Elżbieta2,Zaręba Lech3

Affiliation:

1. Department of Chemical and Process Engineering Rzeszów University of Technology Rzeszów Poland

2. Department of Organic Chemistry Rzeszów University of Technology Rzeszów Poland

3. Interdisciplinary Centre for Computational Modelling College of Natural Sciences, University of Rzeszów Rzeszów Poland

Abstract

AbstractThe kinetics of heterogeneous catalytic reactions is a topic of theoretical and practical importance that combines theoretical and experimental efforts to achieve a deeper insight into the process. Theoretical aspects are concerned with determination of the process mechanism, whereas in practical applications kinetic experiments are applied to assist reactor design and scaling up of various processes. These approaches overlap; basis of the assumed mechanism that consists of many elementary steps, it is possible to find a kinetic equation for which precision is verified by comparison with experimental data. The method most often applied requires finding a single step that has the strongest influence on the process rate. This “classical approach” fails if the rate of two or more steps has comparable values, the precision of the determined kinetic rate becomes only average or even low. Such accuracy was observed, among others, for the gas‐phase hydrogenation of propene. The reaction is easy to carry out and proceeds under mild conditions; the byproducts are not observed. It suggests that there cannot be a single dominating effect step on the process rate. In this work, the application of the polynomial kinetic idea to the gas‐phase hydrogenation of the propene process realized in practice is tested. An attempt of obtaining a handy and precise relationship, without insignificant parameters was made. To realize this, the theoretical form of the polynomial kinetic was derived, and then, using statistical analysis of estimated polynomial parameters, the kinetic relationship was simplified. The final version of the kinetic polynomial and some selected kinetic equations taken from the literature were compared with respect to precision. The differences were significant: the precision of anticipation of the kinetic rate by the polynomial kinetic was 5% higher than for the power law and 12% higher than for the LHHW kinetic.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3