Quantifying the effect of water quality on eDNA degradation using microcosm and bioassay experiments

Author:

McKnight Emma G. W.1ORCID,Shafer Aaron B. A.1ORCID,Frost Paul C.2

Affiliation:

1. Department of Forensic Science Trent University Peterborough Ontario Canada

2. Department of Biology Trent University Peterborough Ontario Canada

Abstract

AbstractEnvironmental DNA (eDNA) is often used to determine the presence and absence of species in a specific environment, be it air, water, or soil. Numerous environmental conditions are known to directly alter the rate at which eDNA degrades, including pH, temperature, and UV‐B light exposure. Beyond these, many limnological parameters have not been thoroughly examined for their ability to modify the degradation rate of eDNA. Here we used 20 mL microcosms with water collected from 12 lakes from the Kawartha Highlands near Peterborough Ontario, Canada, to study the decay rates of dissolved Yellow perch (Perca flavescens) eDNA. We measured and related rates of eDNA loss to multiple water quality parameters: total dissolved phosphorus, total dissolved nitrogen, size‐fractionated carbon, and chlorophyll‐a levels. Bioassays were also conducted to examine the bacterial role in eDNA degradation using three treatments under natural system conditions: non‐filtered, filtered (0.22 μm), and non‐filtered with added phosphorus (50 μg/L). Each microcosm exhibited a unique rate of degradation with eDNA half‐life (C0.5) ranging from 2.5 to 12.9 h. Chlorophyll‐a levels exhibited a positive linear relationship to the rate of degradation, while all other parameters showed no effect. The bioassays showed a general trend of the filtered treatments exhibiting the lowest rate of degradation, followed by the phosphorus treatments with the non‐filtered treatment containing bacteria exhibiting the highest rate of degradation. Overall, water with an increased level of chlorophyll‐a, in conjunction with elevated bacteria (i.e. non‐filtered bioassay) will exhibit a faster overall rate of eDNA degradation. These results show the necessity to individualize eDNA survey plans to the water body of interest and to account for environmental conditions relating to the microbial processing of eDNA.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3