A reinforcement learning‐based energy management strategy for a battery–ultracapacitor electric vehicle considering temperature effects

Author:

Wang Chun1ORCID,Liu Rui1,Tang Aihua2ORCID,Zhang Zhigang2,Liu Pu1

Affiliation:

1. School of Mechanical Engineering Sichuan University of Science and Engineering Zigong Sichuan China

2. School of Vehicle Engineering Chongqing University of Technology Chongqing China

Abstract

SummaryThe design of energy management strategy (EMS) plays a vital role in the power performance and economy of battery–ultracapacitor for electric vehicles. A reinforcement learning (RL)‐based EMS is proposed to obtain an optimal power allocation strategy for battery–ultracapacitor electric vehicle, and its robustness is verified at different temperatures. First of all, the dynamic characteristic experiments of the battery and ultracapacitor were performed at 10°C, 25°C, and 40°C to obtain mechanism characteristics at different temperatures. Secondly, a genetic algorithm is selected to identify the parameters of the battery and ultracapacitor model. Next, the RL‐based strategy takes the minimum energy loss of the hybrid energy storage system as the reward function and solves the optimal policy based on Markov theory. The simulation results show that the economy of the RL‐based strategy correspondingly improved by 3.05%, 3.20%, and 3.15% at different temperatures in comparison with the fuzzy‐based strategy, and the economic gap between the RL‐based strategy and the DP‐based strategy is further narrowed down to 7.30%, 3.88%, and 8.40% at different temperatures, respectively. Finally, the proposed strategy is validated under different driving conditions, which indicate that the RL‐based strategy can effectively reduce energy consumption and has good robustness at different temperatures.

Funder

Fundamental Research Funds for the Key Research Program of Chongqing Science and Technology Commission

National Natural Science Foundation of China

Program for Innovation Team Building at Institutions of Higher Education in Chongqing Municipality

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3