Constructing long‐cycling crystalline C3N4‐based carbonaceous anodes for sodium‐ion battery via N configuration control

Author:

Wang Ying12,Li Hongguan12,Di Shuanlong3,Zhai Boyin3,Niu Ping12,Kelarakis Antonios4,Wang Shulan3,Li Li125ORCID

Affiliation:

1. School of Metallurgy Northeastern University Shenyang Liaoning China

2. State Key Laboratory of Rolling and Automation Northeastern University Shenyang Liaoning China

3. Department of Chemistry, College of Science Northeastern University Shenyang Liaoning China

4. School of Natural Sciences, UCLan Research Centre for Smart Materials University of Central Lancashire Preston UK

5. Foshan Graduate School of Innovation Northeastern University Foshan Guangdong China

Abstract

AbstractCarbon nitrides with two‐dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium‐ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications. Coupling carbon nitrides with conductive carbon may relieve these issues. However, little is known about the influence of nitrogen (N) configurations on the interactions between carbon and C3N4, which is fundamentally critical for guiding the precise design of advanced C3N4‐related electrodes. Herein, highly crystalline C3N4 (poly (triazine imide), PTI) based all‐carbon composites were developed by molten salt strategy. More importantly, the vital role of pyrrolic‐N for enhancing charge transfer and boosting Na+ storage of C3N4‐based composites, which was confirmed by both theoretical and experimental evidence, was spot‐highlighted for the first time. By elaborately controlling the salt composition, the composite with high pyrrolic‐N and minimized graphitic‐N content was obtained. Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic‐N configurations, the composite delivered an unusual reverse growth and record‐level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full‐cell capacity retention. This work broadens the energy storage applications of C3N4 and provides new prospects for the design of advanced all‐carbon electrodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3