Heterogeneous hydroxylation optimization of epoxidized soybean oil using a sustainable route for the production of sustainable polyols

Author:

Gallego Diego1,Arias Sandra2,Calviño Rebeca3,Quintana Sara3,Corral‐Escudero Adrián4,Limones‐Herrero Daniel4,Sánchez Marcos5,Noguerol Rosalía5ORCID

Affiliation:

1. CEIT Technological Center Donostia Spain

2. FORESA Pontevedra Spain

3. ENSO INNOVATION S.L. Culleredo Spain

4. Tecnología de Polímeros QMC SLU Valencia Spain

5. Fundación Centro Tecnológico de Investigación Multisectorial (CETIM) A Coruña Spain

Abstract

AbstractThe purpose of this article is to provide a study of the hydroxylation reaction optimization of epoxidized soybean oil using a mathematical model based on surface response methodology. The variables were selected based on previous studies of the reaction. The three most influential factors are the time, the methanol ratio, and the catalyst ratio. Potentiometric characterization of the hydroxyl index allowed the influence of these factors and their interactions to be measured. It was possible to quantify these influences using multivariate regression. The results show that the three selected factors influenced the reaction yield positively; however, there were some interactions, such as an interaction between time and methanol and the interaction between time and catalyst, which had a negligible influence. The coefficients of the formulas used to construct the mathematical model were obtained from the influence values. The model was able to predict the optimum variable levels for an acceptable reaction yield efficiently and accurately. These levels were: time 244.4 min; methanol:oil ratio 1:4, and catalyst percentage 15.34%. The characterization of the hydroxylated oil product was carried out using Fourier‐transform infrared (FTIR) spectroscopy proton nuclear magnetic resonance (1H‐NMR) and carbon‐13 nuclear magnetic resonance (13C‐NMR) spectroscopy.

Funder

Centro para el Desarrollo Tecnológico Industrial

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3