Battery degradation: Impact on economic dispatch

Author:

Schade Curd12,Egging‐Bratseth Ruud1ORCID

Affiliation:

1. Department of Industrial Economics and Technology Management Norwegian University of Science and Technology Trondheim Norway

2. Workgroup for Infrastructure Policy Technical University Berlin Berlin Germany

Abstract

AbstractBatteries are crucial to manage the rising share of intermittent energy sources and variability in demand. Most technoeconomic models in the literature oversimplify battery degradation representation. Accounting properly for battery degradation allows for better cost tradeoffs and optimal battery usage, especially in dynamic settings. We propose a highly accurate and scalable formulation for battery degradation that considers the combined impact of cycle depth (CD) and state of charge on calendar and cycle aging. This includes a novel way to track charge‐discharge cycles. We test the consequences of battery degradation in a stylized price arbitrage model on battery operation and solution times. When ignoring battery degradation, ex post calculations reveal hidden degradation costs that exceed revenues and hence turn seemingly profitable trades into losing trades. Considering battery degradation leads to smaller CDs and lower average states of charge. Overall, we show that a much‐improved representation of battery degradation is possible at modest computational cost, allowing better decisions and higher profits.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3