Implementation and verification of a user‐defined element (UEL) for coupled thermal‐hydraulic‐mechanical‐chemical (THMC) processes in saturated geological media

Author:

Zhou Xiang1,Zhang Yida2ORCID

Affiliation:

1. Engineering Analyst Cronus Technology Inc. Houston Texas USA

2. Department of Civil, Environmental and Architectural Engineering University of Colorado Boulder Boulder Colorado USA

Abstract

AbstractEfficient and accurate modeling of the coupled thermal‐hydraulic‐mechanical‐chemical (THMC) processes in various rock formations is indispensable for designing energy geo‐structures such as underground repositories for high‐level nuclear wastes. This work focuses on developing and verifying an implicit finite element solver for generic coupled THMC problems in geological settings. Starting from the mass, momentum, and energy balance laws, a specialized set of governing equations and a thermoporoelastic constitutive model is derived. This system is then solved by an implicit finite element (FE) scheme. Specifically, the residuals and the Jacobians are scripted in a user‐defined element (UEL) subroutine which is then combined with the general‐purpose FE software Abaqus Standard to solve initial‐boundary value problems. Considering the complexity of the system, the UEL development follows a stepwise manner by first solving the coupled hydraulic‐mechanical (HM) and thermal‐hydraulic‐mechanical (THM) equations before moving on to the full THMC problem. Each implementation step consists of at least one verification test by comparing computed results with closed‐form analytical solutions to ensure that the various coupling effects are correctly realized. To demonstrate the robustness of the algorithm and to validate the UEL, a three‐dimensional case study is performed with reference to the in‐situ heating test of ATLAS at Belgium in 1980s. A hypothetical radionuclide leakage event is then simulated by activating the chemical‐concentration degree of freedom and prescribing a constant high concentration at the heater's surface. The model predicts a limited contaminated regime after six years considering both diffusion and advection effects on species transport.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3