Color Tuning Using Scanning Optical Tweezers

Author:

Yao Benjun1ORCID,Yuan Shun1,Yang Guowei1ORCID,Lei Hongxiang1ORCID

Affiliation:

1. School of Materials Science and Engineering Nanotechnology Research Center State Key Laboratory of Optoelectronic Materials and Technologies Sun Yat-sen University Guangzhou 510275 China

Abstract

Color tuning plays an increasingly vital role in daily life, including painting, printing, decoration, and animation display. Among many nonemissive color tuning technologies with low‐cost and low‐energy consumption, direct color mixing is simpler without fine and complex display structural designs or specific synthetic materials. Nevertheless, it yet faces an enormous challenge in precise color tuning due to high requirement for integrating dyes in a designable way. Herein, a scanning optical tweezers‐based color mixing method is proposed for precise color tuning. Water/oil‐soluble dye microdroplets with different sizes and colors can be stably captured and then rapidly fused by setting and exerting different trajectories of optical traps under optical tweezers. Thus, the color hue, saturation, and value of the mixed microdroplet can be accurately tuned. Besides, this is further applied to the optical assembly of colorful patterns in a programmable manner. The proposed method is more effective in harvesting pure color and high color quality without introducing exogenous materials contaminating the sample during the manipulation process, which is believed to have potential applications in liquid animation, human–robot interactive painting, and color sensing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3