Adaptive basis sets for practical quantum computing

Author:

Kwon Hyuk‐Yong1ORCID,Curtin Gregory M.1ORCID,Morrow Zachary23ORCID,Kelley C. T.2ORCID,Jakubikova Elena1ORCID

Affiliation:

1. Department of Chemistry North Carolina State University Raleigh North Carolina 27695 USA

2. Department of Mathematics North Carolina State University Raleigh North Carolina 27695 USA

3. Scientific Machine Learning Sandia National Laboratories Albuquerque New Mexico 87123 USA

Abstract

AbstractElectronic structure calculations on small systems such as H2, H2O, LiH, and BeH2 with chemical accuracy are still a challenge for the current generation of noisy intermediate‐scale quantum (NISQ) devices. One of the reasons is that due to the device limitations, only minimal basis sets are commonly applied in quantum chemical calculations, which allows one to keep the number of qubits employed in the calculations at a minimum. However, the use of minimal basis sets leads to very large errors in the computed molecular energies as well as potential energy surface shapes. One way to increase the accuracy of electronic structure calculations is through the development of small basis sets better suited for quantum computing. In this work, we show that the use of adaptive basis sets, in which exponents and contraction coefficients depend on molecular structure, provides an easy way to dramatically improve the accuracy of quantum chemical calculations without the need to increase the basis set size and thus the number of qubits utilized in quantum circuits. As a proof of principle, we optimize an adaptive minimal basis set for quantum computing calculations on an H2 molecule, in which exponents and contraction coefficients depend on the HH distance, and apply it to the generation of H2 potential energy surface on IBM‐Q quantum devices. The adaptive minimal basis set reaches the accuracy of the double‐zeta basis sets, thus allowing one to perform double‐zeta quality calculations on quantum devices without the need to utilize twice as many qubits in simulations. This approach can be extended to other molecular systems and larger basis sets in a straightforward manner.

Funder

National Science Foundation

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3