Can vegetation be discretely classified in species‐poor environments? Testing plant community concepts for vegetation monitoring on sub‐Antarctic Marion Island

Author:

van der Merwe Stephni12ORCID,Greve Michelle3ORCID,Skowno Andrew Luke12ORCID,Hoffman Michael Timm1ORCID,Cramer Michael Denis1ORCID

Affiliation:

1. Department of Biological Sciences University of Cape Town Cape Town South Africa

2. Kirstenbosch Research Centre South African National Biodiversity Institute Cape Town South Africa

3. Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa

Abstract

AbstractThe updating and rethinking of vegetation classifications is important for ecosystem monitoring in a rapidly changing world, where the distribution of vegetation is changing. The general assumption that discrete and persistent plant communities exist that can be monitored efficiently, is rarely tested before undertaking a classification. Marion Island (MI) is comprised of species‐poor vegetation undergoing rapid environmental change. It presents a unique opportunity to test the ability to discretely classify species‐poor vegetation with recently developed objective classification techniques and relate it to previous classifications. We classified vascular species data of 476 plots sampled across MI, using Ward hierarchical clustering, divisive analysis clustering, non‐hierarchical kmeans and partitioning around medoids. Internal cluster validation was performed using silhouette widths, Dunn index, connectivity of clusters and gap statistic. Indicator species analyses were also conducted on the best performing clustering methods. We evaluated the outputs against previously classified units. Ward clustering performed the best, with the highest average silhouette width and Dunn index, as well as the lowest connectivity. The number of clusters differed amongst the clustering methods, but most validation measures, including for Ward clustering, indicated that two and three clusters are the best fit for the data. However, all classification methods produced weakly separated, highly connected clusters with low compactness and low fidelity and specificity to clusters. There was no particularly robust and effective classification outcome that could group plots into previously suggested vegetation units based on species composition alone. The relatively recent age (c. 450,000 years B.P.), glaciation history (last glacial maximum 34,500 years B.P.) and isolation of the sub‐Antarctic islands may have hindered the development of strong vascular plant species assemblages with discrete boundaries. Discrete classification at the community‐level using species composition may not be suitable in such species‐poor environments. Species‐level, rather than community‐level, monitoring may thus be more appropriate in species‐poor environments, aligning with continuum theory rather than community theory.

Funder

University of Cape Town

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3