Tricomponent polymer aerogels containing cellulose nanocrystals and chitin nanofibers and their use in aerogel/hydrogel hybrids as fibrocartilage replacements

Author:

Irvin Cameron12ORCID,Satam Chinmay C.23ORCID,Shial Keya1,Verma Prateek1ORCID,Arroyo Nicole B.1,Meredith Carson23ORCID,Shofner Meisha L.12ORCID

Affiliation:

1. School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia USA

2. Renewable Bioproducts Institute Georgia Institute of Technology Atlanta Georgia USA

3. School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia USA

Abstract

AbstractConsidering the design of structures and materials for use as replacements for biological structures, polymer nanocomposites are desirable materials of construction since they have a large design space, allowing property customization. Biobased nanofibers are particularly suited for these applications since they have high specific mechanical properties and cytocompatibility. Motivated by these attributes, this work examines nanocomposite aerogels and an aerogel/hydrogel hybrid structure designed to mimic an intervertebral disc (IVD), with the aerogel and hydrogel serving as analogs for the annulus fibrosus and the nucleus pulposus, respectively. The aerogels and aerogel/hydrogel hybrid structure contain a mixture of biobased nanofibers, cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs), and a polyvinyl alcohol (PVA) matrix. Characterization of the structure and properties shows that the nanocomposite aerogels containing CNC/ChNF mixtures have larger pores and decreased mechanical properties as compared to aerogels containing only CNCs or only ChNFs. Building on these results, a hybrid comprised of a CNC/PVA aerogel and a CNC/ChNF/PVA hydrogel is constructed with mechanical properties similar to natural IVDs, providing initial validation of the hybrid concept for IVD replacements and pathways to customization through changing material composition in the aerogel and hydrogel and changing the aerogel and hydrogel fractions in the hybrid structure.

Funder

U.S. Department of Education

National Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Present status and application prospects of green chitin nanowhiskers: A comprehensive review;International Journal of Biological Macromolecules;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3