Generalization of Self‐Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices

Author:

Charconnet Mathias12ORCID,Korsa Matiyas Tsegay3ORCID,Petersen Søren3,Plou Javier24ORCID,Hanske Christoph2,Adam Jost3ORCID,Seifert Andreas15ORCID

Affiliation:

1. CIC nanoGUNE BRTA San Sebastián 20018 Spain

2. CIC biomaGUNE Basque Research and Technology Alliance (BRTA) San Sebastián 20014 Spain

3. University of Southern Denmark SDU Centre for Photonics Engineering Mads Clausen Institute Odense 5230 Denmark

4. CIBER‐BBN ISCIII San Sebastián 20014 Spain

5. IKERBASQUE ‐ Basque Foundation for Science Bilbao 48009 Spain

Abstract

AbstractPeriodic superlattices of noble metal nanoparticles  have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near‐field coupling and constructive far‐field interference. Here, a chemically driven, templated self‐assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous  nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far‐field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano‐cluster near‐field behavior, predicting the experimental findings provided by surface‐enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface‐enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well‐defined strong hotspots.

Funder

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3