Affiliation:
1. Graduate School of Environmental, Life, Natural Science and Technology Okayama University Okayama 700‐8530 Japan
2. Faculty of Environmental, Life, Natural Science and Technology Okayama University Okayama 700‐8530 Japan
3. School of Materials and Chemical Technology Tokyo Institute of Technology Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
4. Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China
Abstract
AbstractThe application of carbon nanotube (CNT) yarns as thermoelectric materials for harvesting energy from low‐grade waste heat including that generated by the human body, is attracting considerable attention. However, the lack of efficient n‐type CNT yarns hinders their practical implementation in thermoelectric devices. This study reports efficient n‐doping of CNT yarns, employing 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzimidazole‐2‐yl) phenyl) dimethylamine (N‐DMBI) in alternative to conventional n‐dopants, with o‐dichlorobenzene emerging as the optimal solvent. The small molecular size of N‐DMBI enables highly efficient doping within a remarkably short duration (10 s) while ensuring prolonged stability in air and at high temperature (150 °C). Furthermore, Joule annealing of the yarns significantly improves the n‐doping efficiency. Consequently, thermoelectric power factors (PFs) of 2800, 2390, and 1534 µW m−1 K−2 are achieved at 200, 150, and 30 °C, respectively. The intercalation of N‐DMBI molecules significantly suppresses the thermal conductivity, resulting in the high figure of merit (ZT) of 1.69×10−2 at 100 °C. Additionally, a π‐type thermoelectric module is successfully demonstrated incorporating both p‐ and n‐doped CNT yarns. This study offers an efficient doping strategy for achieving CNT yarns with high thermoelectric performance, contributing to the realization of lightweight and mechanically flexible CNT‐based thermoelectric devices.
Funder
Japan Society for the Promotion of Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献