Strategies to Improve the Output Performance of Triboelectric Nanogenerators

Author:

Li Cong12,Bai Yuan13,Shao Jiajia14,Meng Hongyu1ORCID,Li Zhou134ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 China

2. School of Chemistry and Chemical Engineering Guangxi University Nanning Guangxi 530004 China

3. Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University Nanning 530004 China

4. School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractTriboelectric nanogenerators (TENGs) can collect and convert random mechanical energy into electric energy, with remarkable advantages including broadly available materials, straightforward preparation, and multiple applications. Over the years, researchers have made substantial advancements in the theoretical and practical aspects of TENG. Nevertheless, the pivotal challenge in realizing full applications of TENG lies in ensuring that the generated output meets the specific application requirements. Consequently, substantial research is dedicated to exploring methods and mechanisms for enhancing the output performance of TENG devices. This review aims to comprehensively examine the influencing factors and corresponding improvement strategies of the output performance based on the contact electrification mechanism and operational principles that underlie TENG technology. This review primarily delves into five key areas of improvement: materials selection, surface modification, component adjustments, structural optimization, and electrode enhancements. These aspects are crucial in tailoring TENG devices to meet the desired performance metrics for various applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3