Toward Quantitative Electrodeposition via In Situ Liquid Phase Transmission Electron Microscopy: Studying Electroplated Zinc Using Basic Image Processing and 4D STEM

Author:

Park Junbeom1,Dutta Sarmila1,Sun Hongyu2,Jo Janghyun3,Karanth Pranav4,Weber Dieter3,Tavabi Amir H.3,Durmus Yasin Emre1,Dzieciol Krzysztof1,Jodat Eva1,Karl André1,Kungl Hans1,Pivak Yevheniy2,Garza H. Hugo Pérez2,George Chandramohan5,Mayer Joachim36,Dunin‐Borkowski Rafal E.3,Basak Shibabrata1ORCID,Eichel Rüdiger‐A17

Affiliation:

1. Institute of Energy and Climate Research Fundamental Electrochemistry (IEK‐9) Forschungszentrum Jülich GmbH 52425 Jülich Germany

2. DENSsolutions B.V. Informaticalaan 12 Delft 2628 ZD Netherlands

3. Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH 52425 Jülich Germany

4. Department of Radiation Science and Technology Delft University of Technology Mekelweg 15 Delft 2629JB Netherlands

5. Dyson School of Design Engineering Imperial College London London SW7 2AZ UK

6. Central Facility for Electron Microscopy (GFE) RWTH Aachen University 52074 Aachen Germany

7. Institute of Physical Chemistry RWTH Aachen University 52074 Aachen Germany

Abstract

AbstractHigh energy density electrochemical systems such as metal batteries suffer from uncontrollable dendrite growth on cycling, which can severely compromise battery safety and longevity. This originates from the thermodynamic preference of metal nucleation on electrode surfaces, where obtaining the crucial information on metal deposits in terms of crystal orientation, plated volume, and growth rate is very challenging. In situ liquid phase transmission electron microscopy (LPTEM) is a promising technique to visualize and understand electrodeposition processes, however a detailed quantification of which presents significant difficulties. Here by performing Zn electroplating and analyzing the data via basic image processing, this work not only sheds new light on the dendrite growth mechanism but also demonstrates a workflow showcasing how dendritic deposition can be visualized with volumetric and growth rate information. These results along with additionally corroborated 4D STEM analysis take steps to access information on the crystallographic orientation of the grown Zn nucleates and toward live quantification of in situ electrodeposition processes.

Funder

Royal Society

Bundesministerium für Bildung und Forschung

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3