Interlayer Affected Diamond Electrochemistry

Author:

Chen Xinyue1,Dong Ximan1,Zhang Chuyan1,Zhu Meng1,Ahmed Essraa2,Krishnamurthy Giridharan2,Rouzbahani Rozita2,Pobedinskas Paulius2,Gauquelin Nicolas3,Jannis Daen3,Kaur Kawaljit4,Hafez Aly Mohamed Elsayed5,Thiel Felix6,Bornemann Rainer6,Engelhard Carsten5,Schönherr Holger4,Verbeeck Johan3,Haenen Ken2,Jiang Xin1,Yang Nianjun7ORCID

Affiliation:

1. Institute of Materials Engineering University of Siegen 57076 Siegen Germany

2. Institute for Materials Research (IMO) Institute for Materials Research in MicroElectronics (IMOMEC) IMEC vzw Hasselt University Diepenbeek 3590 Belgium

3. Electron Microscopy for Materials Research (EMAT) University of Antwerp Antwerp 2020 Belgium

4. Physical Chemistry I Department of Chemistry and Biology and Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ) University of Siegen 57075 Siegen Germany

5. Analytical Chemistry Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ) University of Siegen 57075 Siegen Germany

6. Institute for High Frequency and Quantum Electronics University of Siegen 57076 Siegen Germany

7. Department of Chemistry Institute for Materials Research in MicroElectronics (IMOMEC) IMEC vzw Hasselt University Diepenbeek 3590 Belgium

Abstract

AbstractDiamond electrochemistry is primarily influenced by quantities of sp3‐carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate‐interlayers for diamond growth. Boron and nitrogen co‐doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox‐electrolyte‐based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond‐based electrochemical devices.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Bijzonder Onderzoeksfonds UGent

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3