Photocurable and Temperature‐Sensitive Bioadhesive Hydrogels for Sutureless Sealing of Full‐Thickness Corneal Wounds

Author:

Wang Qian1,Zhao Xuan1,Yu Fei1,Fang Po‐Han1,Liu Liu1,Du Xinyue1,Li Weihua1,He Dalian1,Bai Ying2,Li Saiqun1,Yuan Jin1ORCID

Affiliation:

1. State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou 510623 China

2. Guangdong Engineering Technology Research Centre for Functional Biomaterials School of Materials Science and Engineering SunYat‐sen University Guangzhou 510006 China

Abstract

AbstractPenetrating corneal wounds can cause severe vision impairment and require prompt intervention to restore globe integrity and minimize the risk of infection. Tissue adhesives have emerged as a promising alternative to suturing for mitigating postoperative complications. However, conventional water‐soluble adhesives suffer formidable challenges in sealing penetrating corneal wounds due to dilution or loss in a moist environment. Inspired by the robust adhesion of mussels in aquatic conditions, an injectable photocurable bioadhesive hydrogel (referred to as F20HD5) composed of polyether F127 diacrylate and dopamine‐modified hyaluronic acid methacrylate is developed for sutureless closure of corneal full‐thickness wounds. F20HD5 exhibits high transparency, wound‐sealing ability, proper viscosity, biodegradability, and excellent biocompatibility. It allows in situ cross‐linking via visible light, thereby providing sufficient mechanical strength and adhesiveness. In vivo, the adhesive hydrogel effectively closed penetrating linear corneal incisions and corneal injuries with minimal tissue loss in rabbits. During the 56‐day follow‐up, the hydrogel facilitates the repair of the injured corneas, resulting in more symmetrical curvatures and less scarring in distinction to the untreated control. Thus, bioinspired hydrogel holds promise as an effective adhesive for sealing full‐thickness corneal wounds.

Funder

Guangdong Provincial Department of Science and Technology

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3