Advanced Strategies in Synthesis of Two‐Dimensional Materials with Different Compositions and Phases

Author:

Yang Yang1,Jia Lin1,Wang Dainan1,Zhou Jiadong12ORCID

Affiliation:

1. Centre for Quantum Physics Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE) School of Physics Beijing Institute of Technology Beijing 100081 China

2. MIIT Key Laboratory of Complex‐field Intelligent Exploration Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractIn recent years, 2D materials—MaXb with different compositions and phases have attracted tremendous attention due to their diverse structures and electronic features. The common thermodynamically stable 2H and metastable 1T phases have been extensively studied, however, there are many unusual compositions and phases with novel physical properties that have yet to be explored. Therefore, summarization of the synthesis strategies, atomic structures, and the unique physical properties of 2D materials with different compositions and phases is very important for their development. In this review, the strategies including chemical vapor deposition, intercalation, atomic layer deposition, chemical vapor transport, and electrostatic gating for synthesizing various 2D materials with different phases and compositions are first summarized. Specially, the intercalation strategies including heterogeneous‐ and self‐intercalation for controllable phases and compositions fabrication are mainly discussed. Then, the novel atomic structures of 2D materials are analyzed, followed by the fascinating physical properties including ferroelectricity, ferromagnetism, superconductivity, and so on. Finally, the conclusion and outlook are offered including the challenges and future prospects of 2D materials with different compositions and phases.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3