Advancing Energy Sustainability Through Solar‐to‐Fuel Technologies: From Materials to Devices and Systems

Author:

Li Xintong1,Yu Zexin1,Zhang Chunlei1,Li Bo1,Wu Xin1,Liu Yizhe1,Zhu Zonglong2ORCID

Affiliation:

1. Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong

2. Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 China

Abstract

AbstractTo achieve carbon neutrality and sustainable development, innovative solar‐to‐fuel systems have been designed through the integration of solar energy harvesting and electrochemical devices. Over the last decade, there have been notable advancements in enhancing the efficiency and durability of these solar‐to‐fuel systems. Despite the advancements, there remains significant potential for further improvements in the performance of systems. Enhancements can be achieved by optimizing electrochemical catalysts, advancing the manufacturing technologies of photovoltaics and electrochemical cells, and refining the overall design of these systems. In the realm of catalyst optimization, the effectiveness of materials can be significantly improved through active site engineering and strategic use of functional groups. Similarly, the performance of electrochemical devices can be enhanced by incorporating specific additives into electrolytes and optimizing gas diffusion electrodes. Improvements in solar harvesting devices are achievable through efficient passivant and self‐assembled monolayers, which enhance the overall quality and efficiency of these systems. Additionally, optimizing the energy conversion efficiency involves the strategic use of DC converters, photoelectrodes, and redox media. This review aims to provide a comprehensive overview of the advancements in solar‐powered electrochemical energy conversion systems, laying a solid foundation for future research and development in the field of energy sustainability.

Funder

National Key Research and Development Program of China

Innovation and Technology Fund

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3