Measuring Spatially‐Resolved Potential Drops at Semiconductor Hetero‐Interfaces Using 4D‐STEM

Author:

Chejarla Varun Shankar1,Ahmed Shamail1,Belz Jürgen1ORCID,Scheunert Jonas1,Beyer Andreas1,Volz Kerstin1ORCID

Affiliation:

1. Department of Physics and Materials Science Center Philipps‐University Marburg Hans‐Meerwein Str. 6 35032 Marburg Germany

Abstract

AbstractCharacterizing long‐range electric fields and built‐in potentials in functional materials at nano to micrometer scales is of supreme importance for optimizing devices, e.g., the functionality of semiconductor hetero‐structures or battery materials is determined by the electric fields established at interfaces which can also vary spatially. In this study, momentum‐resolved four‐dimensional scanning transmission electron microscopy (4D‐STEM) is proposed for the quantification of these potentials and the optimization steps required to reach quantitative agreement with simulations for the GaAs/AlAs hetero‐junction model system are shown. Using STEM the differences in the mean inner potentials (∆MIP) of two materials forming an interface and resulting dynamic diffraction effects have to be considered. This study shows that the measurement quality is significantly improved by precession, energy filtering and a off‐zone‐axis alignment of the specimen. Complementary simulations yielding a ∆MIP of 1.3 V confirm that the potential drop due to charge transfer at the intrinsic interface is ≈0.1 V, in agreement with experimental and theoretical values found in literture. These results show the feasibility of accurately measuring built‐in potentials across hetero‐interfaces of real device structures and its promising application for more complex interfaces of other polycrystalline materials on the nanometer scale.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3