Synthesis of CsPbBr3 in Micro Total Reaction System: Fast Operation Space Mapping and Subsecond Growth Process Monitoring

Author:

Geng Yuhao12ORCID,Hu Haoyang1ORCID,Jia Yongqi1,Huang Xintong1,Yang Tian1,Liang Runzhe1ORCID,Chen Zhuo1,Yuan Zhihong1ORCID,Xu Jianhong1ORCID

Affiliation:

1. State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China

2. School of Materials Science & Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractLead halide perovskite nanocrystals (LHP NCs) have the characteristics of fast reaction kinetics and crystal instability due to the intrinsically highly ionic bonding between the respective ions, which bring challenges for revealing the growth kinetics and practical applications. Compared with conventional batch synthesis methods, the single‐function microreactor can achieve precise and stable control of the NCs synthesis process, but it still has the shortcoming of not being able to obtain information about the growth process. In this study, a micro Total Reaction System (μTRS) with remote control, online detection, and rapid data analysis functions is designed. μTRS can sample the photoluminescence information of CsPbBr3 NCs growth in ligand‐assisted reprecipitation method. CsPbBr3 NCs with an emission range of 435–492 nm are successfully detected, which breaks the record of the smallest size of CsPbBr3 NCs synthesized directly from precursors. The real‐time feature of μTRS enables the construction of an automated close‐loop synthesis system. Besides, the rapid acquisition and timely processing of product information enable the rapid mapping of the operation space for CsPbBr3 NCs preparation, which provides a reliable and learnable data set for designing a fully autonomous microreaction system capable of synthesizing NCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3