Affiliation:
1. State Key Lab of Superhard Materials College of Physics Jilin University Changchun 130012 P. R. China
2. Christopher Ingold Laboratory Department of Chemistry University College London London WC1H 0AJ UK
Abstract
AbstractThe novel design of carbon materials with stable nanoarchitecture and optimized electrical properties featuring simultaneous intercalation of lithium ions (Li+) and sodium ions (Na+) is of great significance for the superb lithium–sodium storage capacities. Biomass‐derived carbon materials with affluent porosity have been widely studied as anodes for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). However, it remains unexplored to further enhance the stability and utilization of the porous carbon skeleton during cycles. Here, a lotus stems derived porous carbon (LPC) with graphene quantum dots (GQDs) and intrinsic carbon nanowires framework (CNF) is successfully fabricated by a self‐template method. The LPC anodes show remarkable Li+ and Na+ storage performance with ultrahigh capacity (738 mA h g−1 for LIBs and 460 mA h g−1 for SIBs at 0.2 C after 300 cycles, 1C≈372 mA h g−1) and excellent long‐term stability. Structural analysis indicates that the CNFs‐supported porous structure and internal GQDs with excellent electrical conductivity contribute significantly to the dominant capacitive storage mechanism in LPC. This work provides new perspectives for developing advanced carbon‐based materials for multifunctional batteries with improved stability and utilization of porous carbon frameworks during cycles.
Funder
National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research
Subject
General Materials Science,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献