Affiliation:
1. Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics Budapest University of Technology and Economics Budapest Hungary
2. HUN‐REN‐BME Information Systems Research Group Budapest University of Technology and Economics Budapest Hungary
3. Department of Information Management National Taiwan University of Science and Technology Taipei Taiwan
4. Department of Computer Science National Yang Ming Chiao Tung University Hsinchu Taiwan
5. School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand
Abstract
SummaryP4 combines the benefits of hardware‐based networking with the adaptability of software‐based network operations. However, when faced with intricate network functions, P4 switches reveal constraints in memory and processing primitives. To address these, we advocate offloading traffic demanding intricate processing from the programmable data plane to network function virtualization (NFV). By leveraging this approach, P4 switches handle the core data plane, ensuring maximum performance, whereas virtualized network functions (VNF) cater to the intricate processing. Central to our research is the optimization of this offloading process, specifically considering delay constraints. We developed an analytical model that examines a P4 switch overseen by an SDN controller, integrating an offloading capability to NFV. The principal objective was to determine an offloading rate that minimizes packet processing delay. To this end, we employed a Bounded method, an advancement from Brent's method, to determine this optimal rate. The findings indicate that offloading approximately 66% of packets to the VNF achieves the lowest total delay, registering at 0.1505
s. This strategy of optimal offloading can notably reduce the system's average delay as the demand for network functions increases. The optimization technique we adopted exhibited rapid convergence in our experiments, reflecting the method's efficacy. Furthermore, a rigorous parametric sensitivity analysis spanning no offloading, full offloading, and optimal offloading strategies underscores that optimal offloading to NFV consistently augments system performance, particularly in terms of delay reduction. Conclusively, our study furnishes valuable insights into offloading strategies, augmenting the narrative on resource allocation in both PNFs and VNFs.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献