GNSS‐stereo‐inertial SLAM for arable farming

Author:

Cremona Javier1ORCID,Civera Javier2,Kofman Ernesto1,Pire Taihú1ORCID

Affiliation:

1. CIFASIS French Argentine International Center for Information and Systems Sciences (CONICET‐UNR) Rosario Argentina

2. I3A University of Zaragoza Zaragoza Spain

Abstract

AbstractThe accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo‐inertial ORB‐SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in‐house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state‐of‐the‐art approaches. We characterize the performance of GNSS‐stereo‐inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual–inertial and loosely coupled GNSS‐stereo‐inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.

Funder

Universidad de Zaragoza

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3