Optimizing Solar Cell Performance: Hybrid Planar‐Si/Organic Heterojunction Solar Cells Achieve 14.75% Efficiency Through Dibenzothiophene‐Spirobifluorene‐Dithienothiophene Insertion Layer Integration

Author:

Ullah Fahim1,Hasrat Kamran2,Iqbal Sami3,Wang Shuang1ORCID

Affiliation:

1. School of Energy and Power Engineering Jiangsu University Jiangsu 212013 China

2. Jiangsu Province Hi‐Tech Key Laboratory for Biomedical Research School of Chemistry and Chemical Engineering Southeast University Nanjing Jiangsu 211189 P. R. China

3. Joint International Research Laboratory of Information Display and Visualization School of Electronic Science and Engineering Southeast University Nanjing 210096 China

Abstract

Hybrid planar‐Si/organic heterojunction solar cells have garnered substantial interest due to their potential for producing cost‐effective, high‐efficiency devices. This study investigates the photophysical properties and application of dibenzothiophene‐spirobifluorene‐dithienothiophene (DBBT‐mCbz‐DBT) in enhancing the efficiency of photovoltaic devices. Utilizing ultraviolet–visible and fluorescence spectroscopy, DBBT‐mCbz‐DBT is analyzed in solutions and doped films, showing maximum absorption at 380 nm and emission at 440 nm. Notably, the photoluminescence intensity in 4,4′‐di(9H‐carbazol‐9‐yl)‐1,1′‐biphenyl films peaks at 40–50% DBBT‐mCbz‐DBT concentrations, which are selected for solar cell fabrication. Enhanced light absorption and charge transport are observed with a DBBT‐mCbz‐DBT layer on silicon, significantly improving device performance. The planar silicon/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate) (Si/PEDOT:PSS) heterojunction solar cells with DBBT‐mCbz‐DBT exhibit a power conversion efficiency of 14.75%, demonstrating substantial gains over baseline structures. The DBBT‐mCbz‐DBT layer optimizes energy band alignment, reduces recombination losses, and enhances electron transport, improving overall device efficiency. This research underscores the potential of integrating DBBT‐mCbz‐DBT in solar cells to achieve higher performance through simple, scalable fabrication methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3